Barriers distribution for manifolds driven through disorder

Valerii M. Vinokur

Material Science Division, Argonne National Laboratory, Argonne, IL 60439

M. Cristina Marchetti

Physics Department, Syracuse University, Syracuse, NY 13244

Abstract

We consider the low-temperature dynamics of an elastic manifold driven through a random medium. For driving forces well below the T = 0 depinning force, the medium advances via thermally activated hops over the energy barriers separating favorable metastable states. We show that the distribution of waiting times τ for these hopping processes scales as a power-law $\Psi \propto 1/\tau^{1+\alpha}$. This power-law distribution naturally yields a nonlinear glassy response for the driven medium, $v \sim \exp(-\text{const} \times F^{-\mu})$.