James R. Thompson

Oak Ridge National Laboratory and Department of Physics, University of Tennessee

K. J. Song

Department of Physics, University of Tennessee, Knoxville TN 37996-1200 USA

M. Yethiraj and D. K. Christen

Oak Ridge National Laboratory, PO Box 2008, Oak Ridge TN 37831-6061

C. V. Tomy and D. McK. Paul

Department of Physics, University of Warwick, Coventry, UK

Abstract

Previous neutron scattering studies of the flux line lattice in borocarbide compounds have revealed quite complex behavior, which has been attributed to the effects of non-local superconductivity. Complementing this work, we have studied the (surprisingly reversible) magnetization of a single crystal of YNi₂B₂C. Unlike many HTSC's, this material is not dominated by a uniaxial anisotropy. The experiments with H || c-axis are described well by non-local London theory [Kogan *et al.*, Phys. Rev. B **54**, 12386 (1996)], and the resulting material parameters (London penetration depth $\lambda_{ab}(T)$, nonlocal field scale $H_0(T)$) are well behaved. This reinforces the idea that nonlocality plays an important role in "clean" borocarbides. The present results will be compared both with similar investigations in Bi-2212 crystals and Tl-2212 materials, and with determinations of $\lambda_{ab}(T)$ from a neutron scattering study.