

A. Schilling*, R. A. Fisher*, N. E. Phillips*, U. Welp⁺, W. K. Kwok⁺ and G. W. Crabtree⁺

- *Lawrence Berkeley National Laboratory and Department of Chemistry, University of California,

 Berkeley, CA 94720, USA
- + Science and Technology Center for Superconductivity, Argonne National Laboratory, Argonne,
 IL 60439, USA

Abstract

We measured the latent heat of vortex-lattice melting for varying angles θ between the external magnetic field H and the c-axis of an untwinned YBa₂Cu₃O_{7- δ} single crystal. The melting lines $H_m(T,\theta)$, as defined by these thermal experiments, scale perfectly according to recent scaling rules for anisotropic superconductors, with an anisotropy parameter $\gamma=7.7$. In the temperature range 81 K < T < $T_c=92$ K and for any choice of θ , the discontinuity in entropy at melting, $\delta S[T,H_m(T,\theta),\theta]$ per unit volume of sample, depends solely on the temperature T where melting occurs, but does not depend on θ and the corresponding applied magnetic field $H_m(T,\theta)$, which is in full agreement with these scaling rules. The temperature dependence of $\delta S(T)$, near the critical temperature T_c , can be quantitatively explained by a recently developed theory that accounts for the strong T dependence of the model parameters near T_c for the London model describing the thermodynamics of the vortex system.