Anisotropic Rescaling of a Splayed Pinning Landscape in Hg-cuprates: Strong Vortex Pinning and Recovery of Variable Range Hopping

L. Krusin-Elbaum¹, G. Blatter², J.R. Thompson³, D.K. Petrov¹, R. Wheeler⁴, J. Ullmann⁵, and C.W. Chu⁶

¹IBM Research, Yorktown Heights, NY 10598, USA ²ETH-Hönggerberg, CH-8093 Zürich, Switzerland ³Oak Ridge National Laboratory, Oak Ridge, TN 37831 and Department of Physics, University of Tennessee, Knoxville, TN 37996 USA ⁴UES Inc., Dayton, OH 45432

⁵Los Alamos National Laboratory, Los Alamos, NM 87545 ⁶Texas Center for Superconductivity, Houston University, Houston, TX 77204

Abstract

Strong vortex pinning by fission-induced uniformly splayed columnar tracks in anisotropic mercury cuprates is demonstrated to result from (re)scaling of the pinning landscape by a large superconducting anisotropy. The effective 'narrowing' of the splay distribution restores variable range vortex hopping (VRH) motion expected for nearly parallel pins. VRH emerges as a distinctive peak in the vortex creep rate (~ 12% at low fields at $T/T_c \sim 0.5$) of the most anisotropic HgBa₂Ca₂Cu₃O_{8+ δ} – a peak well described by a glassy dynamics with the characteristic exponent $\mu \sim 1/3$.