## Possible new vortex matter phases in Bi<sub>2</sub>Sr<sub>2</sub>CaCu<sub>2</sub>O<sub>8</sub>

D. T. Fuchs<sup>1</sup>, E. Zeldov<sup>1</sup>, M. Rappaport<sup>1</sup>, H. Shtrikman<sup>1</sup>, T. Tamegai<sup>2</sup>, S. Ooi<sup>2</sup>, R. A. Doyle<sup>3</sup>, and S. F. W. R. Rycroft<sup>3</sup>

<sup>1</sup>Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 76100, Israel <sup>2</sup>Department of Applied Physics, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113, Japan <sup>3</sup>IRC in Superconductivity, University of Cambridge, Cambridge CB3 OHE, England

## Abstract

The distribution of the transport current across a crystal is derived by a sensitive measurement of the self-induced magnetic field of the transport current using Hall sensor arrays. It is shown that in Bi<sub>2</sub>Sr<sub>2</sub>CaCu<sub>2</sub>O<sub>8</sub> crystals both the vortex liquid and the vortex solid phases are affected by surface barriers. As a result, the standard transport measurements are dominated by the surface barrier rather than by the bulk vortex dynamics. [Fuchs *et al.*, Nature **391**, **373** (1998); cond-mat/9711284]. New ways to measure the true bulk dynamics are presented.

The vortex matter phase diagram is analyzed by investigating tansport-current driven vortex penetration through the surface barrier. The strength of the effective surface barrier and its nonlinearity and asymmetry are used to identify a possible new ordered phase above the first-order transition. This technique also allows sensitive determination of the depinning temperature. We find that the solid phase below the first-order transition is apparently subdivided into two phases by a vertical line extending from the multicritical point. [Fuchs et al., Phys. Rev. Lett. 80, 4971 (1998); cond-mat/9804205]