Scanning Tunneling Spectroscopy of Vortices in High Temperature Superconductors Ch. Renner^a, I. Maggio-Aprile^a, A. Erb^a, E. Walker^a, B. Revaz^a, K. Kadowaki^b, and Ø. Fischer^a ^aDPMC, Université de Genève, 24, Quai E.-Ansermet, 1211 Genève 4, Switzerland ^bUniversity of Tsukuba, Institute of Materials Science, Tsukuba, 305 Ibaraki, Japan ## Abstract The study of vortices in the high temperature superconductors YBa₂Cu₃O₇ and Bi₂Sr₂CaCu₂O₈ using scanning tunneling spectroscopy has revealed unusual vortex core spectra. Whereas in YBa₂Cu₃O₇ the spectra revealed one single localized state in the vortex core we find no sign of a localized state in Bi₂Sr₂CaCu₂O₈. The spectra in the center of a vortex in the latter compound show a gap structure which corresponds to the pseudogap structure seen in zero field above T_c. This gap structure scales with the superconducting gap as it changes from underdoped to overdoped samples. Following the evolution of the spectra starting from the BCS-like NbSe₂ via YBa₂Cu₃O₇ to Bi₂Sr₂CaCu₂O₈ we find an evolution where the size of the pairs decreases from about 100Å in the former to a value close to the pair-pair distance in the latter. A possible interpretation of the spectra in Bi₂Sr₂CaCu₂O₈ is that vortex cores in this compound are regions where only phase coherence is suppressed but carriers remain paired.